Serotonin mimics tail shock in producing transient inhibition in the siphon withdrawal reflex of Aplysia.
نویسندگان
چکیده
Tail shock-induced modulation of the siphon withdrawal reflex of Aplysia has recently been shown to have a transient inhibitory component, as well as a facilitatory component. This transient behavioral inhibition is also seen in a reduced preparation in which a cellular reflection of the inhibitory process, tail shock-induced inhibition of complex EPSPs in siphon motor neurons, is observed. The biogenic amine serotonin (5-HT) is known to play a role in the facilitatory aspects of sensitization in Aplysia. The aim of this article was to examine whether 5-HT might also contribute to the inhibitory effects of tail shock in the siphon withdrawal reflex. To examine this question, we carried out two kinds of experiments. First, in the isolated abdominal ganglion, we recorded intracellularly from siphon motor neurons and examined the effects of 5-HT on (1) complex (polysynaptic) EPSPs, produced by siphon nerve stimulation, and, simultaneously, (2) monosynaptic EPSPs from siphon sensory neurons. We found that, paralleling the effects of tail shock in the reduced preparation, 5-HT produced transient inhibition of the complex EPSP; the monosynaptic EPSP was facilitated by 5-HT. Second, we examined the behavioral effects of 5-HT on siphon withdrawal in a reduced preparation. We found that 5-HT again paralleled tail shock by producing transient inhibition of the siphon withdrawal reflex. Our results suggest that, in addition to its well-established facilitatory role in reflex modulation in Aplysia, 5-HT might play an important inhibitory role, as well.
منابع مشابه
Identified FMRFamide-immunoreactive neuron LPL16 in the left pleural ganglion of Aplysia produces presynaptic inhibition of siphon sensory neurons.
The gill- and siphon-withdrawal reflex of Aplysia undergoes transient inhibition following noxious stimuli such as tail shock. This behavioral inhibition appears to be due in part to transient presynaptic inhibition of the siphon sensory cells, which can be mimicked by application of the peptide FMRFamide. Although FMRFamide is widespread in the Aplysia nervous system, an FMRFamide-containing i...
متن کاملNeural circuit of tail-elicited siphon withdrawal in Aplysia. II. Role of gated inhibition in differential lateralization of sensitization and dishabituation.
In the preceding report, we observed that tail-shock-induced sensitization of tail-elicited siphon withdrawal reflex (TSW) of Aplysia was expressed ipsilaterally but that dishabituation induced by an identical tail shock was expressed bilaterally. Here we examined the mechanisms of this differential lateralization. We first isolated the modulatory pathway responsible for the induction of contra...
متن کاملA single identified interneuron gates tail-shock induced inhibition in the siphon withdrawal reflex of Aplysia.
The marine mollusc Aplysia has proven very useful for a mechanistic analysis of behavioral modification. Among the stimuli used to modify the behavior of Aplysia, a noxious stimulus, tail shock, is one of the most effective. In addition to the extensively analyzed facilitatory effects of tail shock, recent work has demonstrated that it also produces marked transient inhibition in reflex respons...
متن کاملRunning Head: MECHANISMS OF REFLEX PLASTICITY IN APLYSIA Neural circuit of tail-elicited siphon withdrawal in Aplysia: II. Role of gated inhibition in differential lateralization of sensitization and dishabituation
In the previous report (Bristol et al. 2003), we observed that tail shock-induced sensitization of tail-elicited siphon withdrawal reflex (TSW) of Aplysia was expressed ipsilaterally, but that dishabituation induced by an identical tail shock was expressed bilaterally. Here we examined the mechanisms of this differential lateralization. We first isolated the modulatory pathway responsible for t...
متن کاملDepletion of serotonin in the nervous system of Aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation produced by tail shock.
Noxious stimuli, such as electrical shocks to the animal's tail, enhance Aplysia's gill- and siphon-withdrawal reflex. Previous experimental work has indicated that this behavioral enhancement, known as dishabituation (if the reflex has been habituated) or sensitization (if it has not been habituated), might be mediated, at least in part, by the endogenous monoaminergic transmitter serotonin (5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 11 8 شماره
صفحات -
تاریخ انتشار 1991